In Association with the Insignia of Doctor Honoris Causa of The University of Liège Thursday 22nd March 2012

Recent Advances and Future Trends

on Ship and Offshore Structural Design

Prof. Jeom Kee PAIK, Dr. Eng., FRINA, FSNAME Doctor Honoris Causa of The University of Liège President of The Ship and Offshore Research Institute Director of The Lloyd's Register Educational Trust Research Centre of Excellence Pusan National University, Korea

DHC ULG, Prof. J.K. Paik, 22nd March 2012

- 1. Introduction of Korea, Busan City, and Pusan National University
- 2. The Ship and Offshore Research Institute at PNU
- 3. General Trends in Maritime Industry
 - 3.1 Green Shipping
 - 3.2 Development of Deepwaters
 - 3.3 Human Factors Engineering
- 4. Ship and Offshore Structural Design: Recent Advances and Future Trends
 - 4.1 Limit States Based Methods
 - 4.2 Reliability Based Methods
 - 4.3 Risk Based Methods

DHC ULG, Prof. J.K. Paik, 22nd March 2012

www.EMSHIP.eu

- South Korea is the world's leading (No.1) ship manufacturer and has been consistently ranked at the top in terms of its order book and building quality and capacity.
- South Korea accounts for more than 40% of the global market for shipbuilding.
- South Korea accounts for more than 70% of the global market for offshore platform construction.

Metropolitan City of Busan, Korea

-The second largest city in South Korea -Population = 4 million

· 선박 해양플랜트 기술 연구원 THE SHIP AND OFFSHORE RESEARCH INSTITUTE

DHC ULG, Prof. J.K. Paik, 22nd March 2012

Main Campus of Pusan National University -Total number of students = 31,000 -Total number of NAOE students = 380(undergraduates)/120(graduates)

선박 해양플랜트 기술 연구원

2. The Ship and Offshore Research Institute at Pusan National University

DHC ULG, Prof. J.K. Paik, 22nd March 2012

Organization of The KOSORI

Research Staff (as of March 2012)

Research Staff		Number	Remark	
Faculty Member		4		
Chair Professor		1	Former Deputy Minister, Ministry of Science and Technology, Korea	
Visiting Professor		1	von Karman Chair Professor, University of California at Irvine, USA	
Research Prof	Research Professor			
Research Eng	Research Engineer			
Graduate	Master	19		
Student	PhD	13		
Technician		1		
Administrative		3		
Total		52		

National Advisory Committee Members (as of March 2012) - Mr. M.S. Kim, Technical Director, Lloyd's Register Asia - Mr. J.H. Park, Senior Executive Vice President, Samsung Heavy Industries - Mr. H.S. Bong, Senor Executive Vice President, Stanjin Heavy Industries - Mr. T.H. Park, Senior Executive Vice President, STX Offshore and Shipbuilding - Mr. J.B. Park, Executive Vice President, DSME - Mr. J.B. Park, Executive Vice President, HII (Offshore & Engineering Division) - Dr. K.B. Kann, Senior Vice Veresident, HII (Offshore & Engineering Division) - Dr. K.B. Kann, Senior Vice President, PMI (Offshore & Engineering Division)

- Dr. K.B. Kang, Senior Vice President, POSCO

International Advisory Committee Members (as of March 2012) - Dr. F. Cheng, Head of Strategic Research Group, Lloyd's Register, UK - Dr. A.K. Thayamballi, Senior Principal Consultant, Chevron Shipping, USA - Prof. S.N. Atluri, Chair Professor, University of California at Irvine, USA - Prot. S. M. Attur, Charl Professor, University of Califor - Bernitus Prof. N. Jones, University of Liverpool, UK - Emeritus Prof. O.F. Hughes, Virginia Tech., USA - Prof. R.E. Melchers, University of Newcastle, Australia - Prof. R. Snell, Oxford University, UK
 - Prof. Y. Bai, Zhejiang University, China

DHC ULG, Prof. J.K. Paik, 22nd March 2012

Textbooks

Editor-in-Chief of International Journals

DHC ULG, Prof. J.K. Paik, 22nd March 2012

Editor-in-Chief of UNESCO Encyclopedia

Encyclopedia Of Life Support Systems (EOLSS) 6.177 Ships and Offshore Structures UNESCO, Paris

Editorial Board Members of International Journals

Research Facilities – Computer Program

No.	Program	Usage	
1	ANSYS	Linear / nonlinear finite element analysis	
2	ANSYS CFX	CFD simulations	
3	LS-DYNA	Linear / nonlinear dynamic / impact nonlinear finite element analysis	
4	ALPS	Ultimate strength analysis of plates, stiffened panels and hull girders	
5	FLACS	CFD simulations for Dispersion and explosions	
6	KFX	CFD simulations for fires	
7	DNV Neptune	Risk calculations	
8	CAD system	Drawing	

Research Facilities – Test Facilities (1/7)

High Speed Test Machine

Static/Dynamic Test Frame

DHC ULG, Prof. J.K. Paik, 22nd March 2012

600bar Subsea Chamber (under Construction)

100/500kN Dynamic Actuator

2000/5000kN Static Actuator

· 선박 해양플랜트 기술 연구원 THE SHIP AND OFFSHORE RESEARCH INSTITUTE

Research Facilities – Test Facilities (2/7)

Research Facilities – Test Facilities (3/7)

Research Facilities – Test Facilities (4/7)

Research Facilities – Test Facilities (5/7)

Research Facilities – Explosion/Fire and Subsea Test Facilities (6/7)

Research Facilities – Explosion/Fire and Subsea Test Facilities (7/7)

3. General Trends in Maritime Industry

Trends in Marine Technology and Industry

- 3. General Trends in Maritime Industry
- 3.1 Green Shipping
- 3.2 Development of Deepwaters
- 3.3 Human Factors Engineering

Global Warming and Climate Change

· Climate change is due to global warming.

1

- · Global warming is due to greenhouse gases produced by human activities such as fossil fuel burning.
- 70% of greenhouse gases is CO₂ from fossil fuel.
- As long as the current CO2 emissions are uncontrolled, • experts forecast that the temperature of Earth can be increased by more than 2°C until 2050 and subsequently the sea level can increase up to 10 to 20m.

Source Breakdown of CO₂ Emissions

Pollution from Ships to the Environment

Active Methods for Reduction of CO₂ Emissions from Ships

Measure	Method	How To	Reduction(%)		
Active	Fuel source	 Natural gas Nuclear Others, e.g., solar, wind, hydrogen 	20-30%		
	Structural material	New high tensile steel material	2-5%		
	Structural design	 Structural optimization 	2-5%		
	Hull form design	Hull form optimizationBulbous bow optimization	2-3%		
	Propeller design	 High efficiency propeller 	2-3%		
	Device	 Shaft generator 	1%		
		Pre-swirl stator (PSS)	3-6%		
		 Water heat recovery system (WHRS) 	3-4%		
		Air cavity system, micro bubble	7-10%		
		SOx/NOx reduction device			
	Operation	 Trim operation 	3-4%		
		 Optimum weather routing 	4-5%		
· 선박 해양플린 THE SHIP AND OFFSH	Set Adv moderstock asstructure and the set Advance assessment of t				

Active Methods for Reduction of CO_2 Emissions from Ships

Passive Methods for Reduction of CO₂ Emissions

Measure	N	lethod		How To		
Passive	Passive Carbon treatment		Carbon captur	е		
			Carbon transp	ortation via	a ship or pipelin	e
			Carbon storag	е		
	_				_	
		-	~	m		
				null # 21/co	- Continet	
	and the repr			na zele,	Carlos a	
				ALE ALE A		
		& separation plant	compression unit	transport	injection	
	444			>		
	ST.	7.	5.m			
	as T				A	
	C (eg.	O ₂ source	A AN		CO ₂ storage	
	(-6.)	ponter plandy	(LUR -			
선박 해양플랜 제6 이미 제6 이미	트 기술 연구원	DHC ULG, F	Prof. J.K. Paik, 22 nd Ma	rch 2012	www.EMSHIP.e	u k
THE SHIP AND OFFSHO	KE RESEARCH INSTITUTE					

Concept Design of CCS with CO₂ Carriers

- 3. General Trends in Maritime Industry
- 3.1 Green Shipping
- 3.2 Development of Deepwaters
- 3.3 Human Factors Engineering

Demand of Oil in China and United States

Global Oil Supplies

Development of Energy Sources in Deepwaters

- The deep sea is a treasure house of energy resources such as oil, natural gas, gas hydrate, minerals (rare materials).
- Renewable energy sources such as wind energy and current energy are available.
- World market size is growing with more than 500billion US\$ in 2030.

선박 해양플랜트 기술 연구원 THE SHIP AND OFFSHORE RESEARCH INSTITUTE

DHC ULG, Prof. J.K. Paik, 22nd March 2012

Offshore Production Systems

- Fixed type in shallow waters → Floating type in deep waters
- Ship-shaped offshore unit, Semi-sub, Spar, TLP
- Pipeline infrastructure \rightarrow Multiple functions such as production, storage and offloading

3. General Trends in Maritime Industry

- 3.1 Green Shipping
- 3.2 Development of Deepwaters
- 3.3 Human Factors Engineering

DHC ULG, Prof. J.K. Paik, 22nd March 2012

Most of accidents are the result of a long chain of human error, with such error responsible for

- 65% of all airline accidents,
- 80% of all maritime casualties,
- 90% of all automobile accidents, and
- 90% of all nuclear facility emergencies.

DHC ULG, Prof. J.K. Paik, 22nd March 2012

Accidents – Result of a Long Chain of Human Error

- Human error results from ignoring human factors and ergonomics.
- Ignorance of human factors is either the root cause of or a major contributing factor to many maritime accidents.
- Ignorance of engineering factors is primarily due to a lack of knowledge and guidance at the design, building and operation stages.

· 선박 해양플랜트 기술 연구원 THE SHIP AND OFFSHORE RESEARCH INSTITUTE

DHC ULG, Prof. J.K. Paik, 22nd March 2012

www.EMSHIP.eu

Paradigm Change in Engineering and Design

International Rules and Standards

Human Factors Engineering

• Over the last decade, the likelihood and consequences of marine casualties have certainly declined, in part due to technological improvements.

 However, the public's growing concerns and intolerance for safety, health and environmental risk suggest that more has to be done going forward.

 Because the majority of marine casualties is related to human error and human factors, human factors engineering will play a central role to achieve substantive technological improvements and subsequently to prevent accidents.

· 선박 해양플랜트 기술 연구원 THE SHIP AND OFFSHORE RESEARCH INSTITUTE	DHC ULG, Prof. J.K. Paik, 22 nd March 2012	www.EMSHIP.eu
---	---	---------------

April 2012 Issue of Marine Technology, SNAME

4. Ship and Offshore Structural Design: Recent Advances and Future Trends

DHC ULG, Prof. J.K. Paik, 22nd March 2012

Ocean Environmental Phenomena in Ships and Offshore Installations

Basis of Acceptance Criteria:

- Limit States: Extreme phenomena
- Reliability
- · Risk: Accidental phenomena, e.g., explosion, fire

Nonlinear Structural Consequences = function of (*a*,*b*,*c*,*d*,*e*,*f*,*g*,*h*)

where,

- a = geometric properties
- b = material properties
- c = fabrication related initial imperfections
- d = load types/components (quasi-static)
- e = strain rate effect associated with dynamic/impact load profiles due to sloshing/slamming/green water, explosion, collision, grounding
- f = effect of temperatures, e.g. low (Arctic), cryogenic (LNG) and elevated (fire)

g = age-related degradation, e.g. corrosion, fatigue crack, denting

```
· 선박 해양플랜트 기술 연구원
THE SHIP AND OFFSHORE RESEARCH INSTITUTE
```

DHC ULG, Prof. J.K. Paik, 22nd March 2012

www.EMSHIP.eu

Design Criteria

 $C_d > D_d$ Reliability = β = 1-P_f $\ge \beta_o$ Risk \le ALARP

where,

C_d = Design capacity

D_d = Design demand

- P_f = Probability of failure
- β = Reliability index
- β_o = Target reliability index

ALARP = As low as reasonably practicable

4. Ship and Offshore Structural Design: Recent Advances and Future Trends4.1 Limit States Based Methods

- Ultimate limit states (ULS)
- Serviceability limit states (SLS)
- Fatigue limit states (FLS)
- Accidental limit states (ALS)

DHC ULG, Prof. J.K. Paik, 22nd March 2012

www.EMSHIP.eu

Limit States Based Structural Design Optimization

Ultimate Strength of Stiffened Panels: 6 Types of Collapse Modes

Modified Paik-Mansour Formula for Hull Collapse Strength Calculation

of ship hulls, accepted for publication in Ships and Offshore Structures, 2012.

DHC ULG, Prof. J.K. Paik, 22nd March 2012

Method	NLFEM	ISUM/Smith Method	ISFEM (ALPS/HULL)	
Geometric modeling		Plate-stiffener combination model	Plate-stiffener separation model	
Formulation technique	Numerical formulation $\sigma = \int [B]^T [D] [B] dvol$ [D]: Numerical formulation	Closed form formulation $\sigma = \Phi \sigma_{\gamma}$ $\Phi = edge function$ $= \begin{cases} -1 & \text{for } \varepsilon < -1 \\ \varepsilon & \text{for } -1 < \varepsilon < 1 \\ 1 & \text{for } \varepsilon > 1 \end{cases}$	Numerical formulation $\sigma = \int [B]^{T} [D] [B] dvol$ [D]: Closed-form solution	
Computational cost	Expensive	Cheap	Cheap	
Feature (1)	2 and 3-dimensional	2-dimensional	2 and 3-dimensional	
Feature (2)	Can deal with interaction between local and global failures	Can not deal with interaction between local and global failures	Can deal with interaction between local and global failures	
선박 해양플랜트 기술 연구원 DHC ULG, Prof. J.K. Paik, 22 nd March 2012 <u>www.EMSHIP.eu</u> EMShip				

Methods for Progressive Hull Collapse Analysis

Methods for Progressive Hull Collapse Analysis - Extent of Analysis

Theory of the ALPS/ULSAP Method

ALPS/ULSAP (Analysis of Large Plated Structures / Ultimate Limit State Assessment Program), developed by Prof. J.K.Paik, Pusan National University

4. Ship and Offshore Structural Design: Recent Advances and Future Trends4.2 Reliability Based Methods

Reliability Based Design Criteria

Reliability = β = 1-P_f $\ge \beta_o$

Variation of calculated reliability indices for tankers and FPSs

[Ref.] J.K. Paik and P.A. Frieze, Ship Structural Safety and Reliability, Progress of Structural Engineering and Materials, Vol.3, 2001, pp.198-210.

	DHC ULG, Prof. J.K. Paik, 22 nd March 2012	www.EMSHIP.eu
--	---	---------------

Reliability Based Design Criteria

Trend f calculated reliability indices for tankers and FPSs

[Ref.] J.K. Paik and P.A. Frieze, Ship Structural Safety and Reliability, Progress of Structural Engineering and Materials, Vol.3, 2001, pp.198-210.

4. Ship and Offshore Structural Design: Recent Advances and Future Trends4.3 Risk Based Methods

Risk Based Design Method (Formal Safety Assessment)

What is Risk? How to Manage Risk?

$$R = \sum_{i} F_i \times C_i$$

- Asset risk
- Damage to structures and equipment
- Duration of production delay (downtime)
- Environmental risk
- Amount of oil that spills out of the offshore installation
- Personnel risk
- Loss of life

DHC ULG, Prof. J.K. Paik, 22nd March 2012

FPSO for Oil and Natural Gas Production

Vessel (hull), topsides (process facility), mooring, umbilicals/risers/flowlines, subsea, and export system

Oil/Gas Leak Resulting in Explosion and Fire

Pipe Alpha Accident

- 6th July 1988, UK
- 167 people killed
- Property damage of 1.4billion US\$
- Risk based engineering became mandatory since the Pipe Alpha accident

DHC ULG, Prof. J.K. Paik, 22nd March 2012

www.EMSHIP.eu

Deepwater Horizon Accident

- 20th April 2010, Gulf of Mexico
- 11 people killed, 17 people wounded
- Environmental damage of approx. 30 billion US\$

원 DHC ULG, Prof. J.K. Paik, 22nd March 2012

www.EMSHIP.eu

Hydrocarbon Explosions and Fires

• Hydrocarbons can explode through ignition when combined with an oxidiser (usually air). Thus, when the temperature rises to the point at which hydrocarbon molecules react spontaneously to an oxidiser, combustion takes place. This hydrocarbon explosion causes a blast and a rapid increase in overpressure.

• Fire is a combustible vapour or gas that combines with an oxidiser In a combustion process that is manifested by the evolution of light, heat, and flame.

• The impact of overpressure from explosions and that of elevated temperature from fire are the primary concern in terms of the actions That result from hazards within the risk assessment and management framework.

Mechanism of Gas Explosion – Depending on Topology and Geometry

Factors Affecting Explosions and Fires

Quantitative Gas Explosion Risk Assessment and Management (1/2)

EFEF JIP Procedure for Explosion Risk Assessment and Management (2/2)

EFEF JIP Fire Risk Assessment and Management (1/2)

EFEF JIP Procedure for Fire Risk Assessment and Management (2/2)

Applied Example: VLCC Class FPSO Topsides

Effect of Gas Cloud Volume on Maximum Overpressure – Comparison between EFEF and Existing FPSO Practices

Design Explosion Loads with Exceedance Curves

Design Explosion Loads - Comparison between EFEF JIP and Existing FPSO Practic

Design Fire Loads with Exceedance Curves

Nonlinear Structural Consequence Analysis – Escape Route

CFD Explosion Simulations

Gas Explosion Tests with or without Water Sprays (1/2) - Importance of Risk Management

Without water sprays

With water sprays

Source: © The Steel Construction Institute, Fire and Blast Information Group

Gas Explosion Tests with or without Water Sprays (2/2) - Importance of Risk Management

Trends in Risk Assessment

Human Factors Engineering

Over the last decade, the likelihood and consequences of marine casualties have certainly declined, in part due to technological improvements.

• However, accidents continue to occur while ships and offshore installations are in service, regardless of the significant efforts exerted toward eliminating them.

• Furthermore, the public's growing concerns and intolerance for safety, health and environmental risk suggest that more has to be done going forward.

• The best way of achieving this goal is to reduce human error by better understanding ocean environmental phenomena and then apply human factor and ergonomic best practices to vessel design, engineering, construction, and operation.

In Association with the Insignia of Doctor Honoris Causa of The University of Liège Thursday 22nd March 2012

Thanks to

- Ecole Centrale de Nantes (ECN) to welcome this conference
- EMSHIP (European ERASMUS MUNDUS), coordinated by

the University of Liège and ECN

